

Test Paper: MATHEMATICSTime: 50 MinutesClass: 10th C.B.S.E.Max. Marks: 30 MarksDate: 11th April, 2018

<u>Marking Scheme</u>: Three questions carry 10 marks each. Question 1 has 10 MCQ's of 1 mark each. Questions 2 and 3 have 3 subparts each. Subparts (a) and (b) carry 3 marks each and subpart (c) carries 4 marks. Question 1 is compulsory. Attempt any 2 out of questions numbers 2, 3 and 4.

Question 1:

1. The decimal expansion	of number $\frac{441}{2^2 \times 5^3 \times 7}$ has:		
(a) a terminating decimal		(b) non-terminating but repeating	
(c) non-terminating non repeating		(d) terminating after two places of decimal	
2. If $p(x) = ax^2 + bx + c$, then $-\frac{b}{a}$ is equal to			
(a) O	(b) 1	(c) product of zeroes	(d) sum of zeroes
3. For any positive integer a and 3, there exist unique integers q and r such that a = 3q + r, where r must satisfy :			
(a) 0≤r<3	(b) 1 < r < 3	(c) 0 < r < 3	(d) 0 < r ≤ 3
	I, when 2 is subtracted from ominator. Find the fraction.	n the numerator and it becomes 1/4	
5. If $p(x)$ is a polynomial of at least degree one and $p(k) = 0$, then k is known as			
(a) value of p(x)		(b) zero of p(x)	
(c) constant term of p(x)		(c) none of these	
6. If p(x) = ax + b, then ze		-3	
(a) a	(b) b	(c) <u>–a</u>	(d) <u>-b</u>
.7. If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$; x, y are prime numbers, then HCF (a, b) is			
(a) xy	(b) xy ²	(c) x ³ y ³	(d) x^2y^2
.8. If two positive integers p and q can be expressed as $p = ab^2$ and $q = a^3b$; a, b being prime numbers, then LCM (p, q) is			
(a) ab	(b) a ² b ²	(c) a ³ b ²	(d) a ³ b ³
	does not intersects the x-ax es of the polynomial is equa	-	
(a) 0	(b) 1	(c) 0 or 1	(d) none of these
10. A polynomial of degre			
(a) only 1 zero	(b) exactly n zeroes	(c) atmost n zeroes	(d) more than n zeroes

Question 2:

- 1. i) The product of two numbers is 120. If their H.C.F. is 6 what is their L.C.M.
 - ii) For what value of k, (-4) is a zero of the polynomial $x^2 x (2k + 2)$?
- 2. Two pens and one eraser cost Rs. 35 and 3 pencil and four erasers cost Rs. 65. Find the cost of pencil and eraser separately.
- 3. Find all the zeroes of the polynomial $2x^4 + -19x^2 + 7x 14x + 30$, if two of its zeroes are $\sqrt{2}$ and $\sqrt{2}$

Question 3:

- 1. Show that the square of an odd positive integer is of the form 8m + 1, for some whole number m.
- 2. Find the remainder and quotient on division of $2x^2 + 3x + 1$ by x + 2 using division algorithm.
- 3. Prove that $\sqrt{3}$ is irrational. Hence prove that $\sqrt{3} + 5$ is also irrational.

Question 4:

- 1. Solve the system of equations: 2x 3y = 1 and 3x 4y = 1 by graphical method.
- 2. Use the method of substitution to solve each other of the pair of simultaneous equations:
 - (a) x + y = 15 x y = 3
 - (b) x + y = 0 x y = 2
- 3. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).