

Test Paper: MATHEMATICSTime: 50 MinutesClass: 9th C.B.S.E.Max. Marks: 30 MarksDate: 11th April, 2018

<u>Marking Scheme</u>: Three questions carry 10 marks each. Question 1 has 10 MCQ's of 1 mark each. Questions 2 and 3 have 3 subparts each. Subparts (a) and (b) carry 3 marks each and subpart (c) carries 4 marks. Question 1 is compulsory. Attempt any 2 out of questions numbers 2, 3 and 4.

Question 1:

1. On dividing 6√27 by 2√3 (a) 3√9	we get (b) 6	(c) 9	(d) none of these
2. A rational number equiva (a) <u>15</u>	alent to $\frac{5}{7}$ is (b) $\frac{25}{7}$	(c) <u>10</u>	(d) <u>10</u>
17	27	14	27
3. Identify the polynomial (a) $x^{-2} + x^{-1} + 5$	(b) $x^2 + 5\sqrt{x} + 7$	(c) $\frac{1}{x^3} + 7$	(d) $3x^2 + 7$
4. The zero of the polynon	nial p(x) = 2x + 5 is		
(a) 2	(b) 5	(c) $\frac{2}{5}$	(d) $-\frac{5}{2}$
5. The rational number 0	can also be written as		
(a) 0.3	(b) $\frac{3}{10}$	(c) 0.33	(d) $\frac{1}{3}$
6. The polynomial of type	ax ² + bx + c, a = 0 is of type		
(a) linear	(b) quadratic	(c) cubic	(d) Biquadratic
7. The value of k, if (x – 1) (a) 1	is a factor of 4x ³ + 3x ² – 4x + k, is (b) 2	(c) -3	(d) 3
8 If x + 2 is a factor of x^3 -	\cdot 2ax ² + 16, then value of a is		
(a) 3	(b) 1	(c) 4	(d) 2
9. The value of $\frac{1}{\sqrt{10}}$ when	√10 = 3.162 ^{is}		
(a) .3162	(b) 31.62	(c) .03162	(d) 316.2
10. (16) ^{3/4} is equal to			
(a) 2	(b) 4	(c) 8	(d) 16

Question 2:

- 1. a. Represent-13/5 on a number line b. Represent $\sqrt{2}$ on a number line
- 2. Rationalise: $\frac{1}{2\sqrt{2}-\sqrt{3}}$
- 3. Find the remainder and quotient on division of $2x^2 + 3x + 1$ by x + 2 using division algorithm.

Question 3:

- 1. Represent $0.\overline{245}$ in the form p/q.
- 2. Represent $\sqrt{3.4}$ on a number line
- 3. a. Use the Remainder Theorem, find the remainder when $x^4 3x^2 + 4x 12$ is divided by x 1. b. Find the value of k, if x - 1 is a factor of $4x^3 + 3x^2 - 4x + k$.

Question 4:

- 1. Using division algorithm, find the quotient and the remainder on dividing f(x) by g(x), where $f(x) = 6x^3 + 12x^2 + 6x + 12$ and g(x) = x+2. Is g(x) a factor of f(x)?
- a. Verify whether 2 and 0 are zeroes of the polynomial x² 2x.
 b. Find the remainder when x³ ax² + 6x a is divisible by x a using remainder theorem.
- 3. Represent 2.144... on a number line upto 3 decimal places using successive magnification