

 $N_2 + 3H_2 \perp 2NH_3$

Which is correct statement if N_2 is added at equilibrium condition?

- (A) The equilibrium will shift to forward direction because according to II law of thermodynamics the entropy must increases in the direction of spontaneous reaction.
- (B) The condition for equilibrium is $G_{N_2} + 3G_{H_2} = 2G_{NH_3}$ where G is Gibbs free energy per mole of the gaseous species measured at that partial pressure. The condition of equilibrium is unaffected by the use of catalyst, which increases the rate of both the forward and backward reactions to the same
- (C) The catalyst will increase the rate of forward reaction by α and that of backward reaction by β .
- (D) Catalyst will not alter the rate of either of the reaction.
- The electrons, identified by n & l; (i) n = 4, l = 1(ii) n = 4, l = 0(iv) n = 3, l = 1 can be placed in order of increasing energy, from the lowest (iii) n = 3, l = 2to highest as:
 - (A) (iv) < (ii) < (iii) < (i)
- (B) (ii) < (iv) < (i)

(C) (i) < (iii) < (ii) < (iv)

- (D) (iii) < (i) < (iv) < (ii)
- X ml of H₂ gas effuses through a hole in a container in 5 sec. The time taken for the effusion of the same 3 volume of the gas specified below under identical conditions is:
 - (A) 10 sec, He
- (B) 20 sec, O,
- (C) 25 sec, CO
- (D) 55 sec, CO₂
- When NO₂ is bubbled into water, it disproportionates completely into HNO₂ and HNO₃. 4

 $2NO_2 + H_2O(l) \longrightarrow NHO_2(aq.) + HNO_3(aq.)$

The concentration of NO_2^- in a solution prepared by dissolving 0.05 mole of NO_2^- gas in 1 litre H_2O is

 $\{K_a (HNO_2) = 5 \times 10^{-4}\}$ is

5

(A)
$$\sim 5 \times 10^{-4}$$
 (B) $\sim 4.8 \times 10^{-5}$

(C)
$$\sim 4.8 \times 10^{-3}$$

(D)
$$\sim 2.55 \times 10^{-2}$$

- Which of the following is most soluble in water?
 - (A) MnS ($K_{sp} = 8 \times 10^{-37}$)

(C) Bi_2S_3 ($K_{sp} = 1 \times 10^{-72}$)

(B) ZnS $(K_{sp} = 7 \times 10^{-16})$ (D) $Ag_3(PO_4)$ $(K_{sp} = 1.8 \times 10^{-18})$

Space for rough work

- **6** The incorrect statement among the following is:
 - (A) the first ionisation potential of Al is less that the first ionisation potential of Mg
 - (B) the second ionisation potential of Mg is greater that the second ionisation potential of Na
 - (C) the first ionisation potential of Na is less than the first ionisation potential of Mg
 - (D) the third ionisation potential of Mg is greater than the third ionisation potential of Al
- 7 A solid has a structure in which W atoms are located at the corners of a cubic lattice, O atom at the centre of the edges and Na atom at centre of the cubic. The formula for the compound is
 - (A) NaWO₂
- (B) NaWO₃
- (C) Na₂WO₃
- (D) NaWO₄
- 8 The density of CaF₂ (fluorite structure) is 3.18 g/cm³. The length of the side of the unit cell is
- (A) 253 pm
- (B) 344 pm
- (C) 546 pm
- (D) 273 pm
- For the reaction $3 A(g) + B(g) \perp 2 C(g)$ at a given temperature, $K_c = 9.0$. What must be the volume of the flask, if a mixture of 2.0 mol each of A, B and C exist in equilibrium?
 - (A) 6L

10

- (B) 9L
- (C) 36 L
- (D) None of these
- The orbital diagram in which the Aufbau's principle is violated is
- Space for rough work

- 11 The correct set of quantum numbers for the unpaired electron of chlorine atom is
 - $\begin{array}{cccc}
 & n & l & m \\
 & (A) & 2 & 1 & 0
 \end{array}$

(B) $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$

(C) 3 1 1

- (D) 3 0 0
- 12 OH $\xrightarrow{H^+}$ \xrightarrow{X} $\xrightarrow{Br_2}$ 5 compounds of molecular formula $C_4H_8Br_2$

Number of compounds in X will be:

- (A) 2
- (B)3
- (C)4
- (D)5
- 13 The compressibility of a gas is less than unity at STP. Therefore

- (A) $V_m > 22.4 L$
- (B) $V_{\rm m} < 22.4 \, \rm L$
- (C) $V_m = 22.4 L$
- (D) $V_m = 44.8 L$
- 14 Give the correct order of initials T (true) or F (false) for following statements.
 - (I) If an ion has 2 electrons in K shell, 8 electrons in L shell and 6 electrons in M shell, then number of S electrons present in that element is 6.
 - (II) The maximum number of electrons in a subshell is given by $2n^2$.
 - (III) If electron has magnetic number –1, then it cannot be present in s-orbital.
 - (IV) Only one radial node is present in 3p orbital.
 - (A) TTFF
- (B) FFTF
- (C) TFTT
- (D) FFTF
- 15 The decreasing size of K^+ , Ca^{2+} , C^{1-} & S^{2-} follows the order:
 - (A) $K^+ > Ca^{+2} > S^{-2} > Cl^-$

(B) $K^+ > Ca^{+2} > Cl^- > S^{-2}$

(C) $Ca^{+2} > K^+ > Cl^- > S^{-2}$

(D) $S^{-2} > Cl^- > K^+ > Ca^{+2}$

Space for rough work

16	Sulfide ion in alkaline solution reacts with solid sulfur to form polysulfide ions having formulas S_2^{2-} , S_3^{2-} , S_4^{2-} and so on. The equilibrium constant for the formation of S_2^{2-} is 12 (K_1) & for the formation of S_3^{2-} is 132 (K_2), both from S and S^{2-} . What is the equilibrium constant for the formation						the					
	of S_3^{2-} from S_2^{2-} and S ?						,IOII					
	(A) 1		2	(B) 1	2	(C)	132		(D)	None of th	iese	
17						$N_2O_4(g)$ 1 tained when	2NO ₂	(g)				
	(\mathbf{A}) 0		•		273 K	(C)	l K		(D)	12.19 K		
18	Which of the following sets of quantum numbers represent an impossible arrangement											
		n	l	m	m_{s}		n	1	m	m_{s}		
	(A)	3	2	-2	$\frac{1}{2}$	(B)	4	0	0	$\frac{1}{2}$		
	(C)	3	2	-3	$\frac{1}{2}$	(D)	5	3	0	$\frac{1}{2}$		
19	Which	hofthe	followir	ng statem	nents is cor	rect in the roo	k-salt s	tructure	of an io	nic compo	unds?	
	(A) coordination number of cation is four whereas that of anion is six.											
	(B) coordination number of cation is six whereas that of anion is four.											
	(C) coordination number of each cation and anion is four.(D) coordination number of each cation and anion is six.											
	(D) C	oorama	uon nun	noer or ea	acii cation	and amon is s	IX.					
20	The c	oordina	ation nui	nber of c	ation and	anion in Fluo	ite CaF	and Cs	Cl are i	espectively	V	
	TANKS OF A STATE OF	:4 and 6			3 and 4:4		:4 and 8	_		4:2 and 2:4		
	Space for rough work											

21	A gas undergoes dissociation as A_4	$(g) \longrightarrow 4A(g)$ in a closed rigid	d container having	volume 22.4 litres		
	at 273 K. If the initial moles of A_4 taken before dissociation is 1 then					
	The total pressure (in atm) after 50% completion of the reaction (assuming ideal behaviour)					
	(A) 1/2 (B) 2	(C) 2.5	(D)4			

- If the gases are not ideal & at the beginning total pressure observed is less than 1 atm then (A) compressibility factor of $A_4 > 1$ (B) compressibility factor of $A_4 < 1$
- (C) compressibility factor of $A_4 = 1$ (D) compressibility factor of A > 1
- 23 If the gases are non–ideal & after 100% dissociation total pressure is greater than 4 atm, then
- (A) The compression of A(g) will be easier than that of ideal gas
 - (B) The compression of A(g) will be difficult than that of ideal gas
 - (C) The compression of A(g) will be same as that of ideal gas
 - (D) A cannot be compressed
- **24** Which one has sp² hybridisation
 - (A) CO_2 (B) SO_2 (C) N_2O (D) CO CH_3 CH_3
- The correct IUPAC name of the compound $CH_3 CH_2 C = C CH C CH_2 CH_2 CH_3$: C_2H_5
 - (A) 5-ethyl-3, 6-dimethyl non-3-ene (C) 4-methyl-5, 7-diethyl oct-2-ene (D) 2,4-ethyl-5-methyl oct-2-ene
 - Space for rough work

9860237373

- 26 $10 \text{ ml of } \frac{M}{200} \text{ H}_2\text{SO}_4$ is mixed with 40 ml of $\frac{M}{200} \text{ H}_2\text{SO}_4$. The pH of the resulting solution is
 - (A) 1

(A) N_3^-

- (B)2
- (C) 2.3
- (D) none of these
- Pick out among the following species not isoelectronic with ${\it CO}_2$:
 - (B) (*CNO*)⁻
- (C) $(NCN)^{2-}$
- (D) NO_{2}^{-}
- **28** The reaction of propene with HOCl proceeds via the addition of
 - (A) H⁺ in first step

(B) Cl⁺ in first step

(C) OH⁻ in first step

- (D) Cl⁺ and OH⁻ in single step
- 29 1 CC of 0.1 N HCl is added to 99 CC solution of NaCl. The pH of the resulting solution will be
 - (A) 7
- (B)3
- (C)4
- (D) 1

- **30** The order of strength of hydrogen bonds is:
 - $(\mathsf{A})\,ClH\,...Cl > NH\,...N > OH\,...O > FH\,...F$
- (B) ClH...Cl < NH...N < OH...O < FH...F
- (C) ClH...Cl < NH...N > OH...O > FH...F
- (D) ClH...Cl < NH...N < OH...O > FH...F

Space for rough work

9860237373

31	The enthalpy of vapourization of a liquid is 30 kJ mol ⁻¹ and entropy of vapourization is 75 J mol ⁻¹ K.					
		f the liquid at 1 atm is				
	(A) 250 K		(B) 400 K			
	(C) 450 K		(D) 600 K			
32	One mol of non-ide	eal gas undergoes a chang	ge of state (2.0 atm, 3.0]	L, 95 K) to (4.0 atm, 5.0 L, 245 K)		
			-	halpy (ΔH) of the process in L-atm.		
	(A) 40.0	8, ()				
	(B) 42.3					
	(C) 44.0					
	(D) not defined, be	ecause pressure is not cor	nstant			
33	The ratio between the r.m.s. velocity of H ₂ at 50 K and that of O ₂ at 800 K is:					
	(A) 4	(B) 2	(C) 1	(D) 1/4		
34	One element has at	omic weight 39. Its elec	etronic configuration is	$1s^2$, $2s^2 2p^6$, $3s^2 3p^6 4s^1$. The true		
	statement for that element is:					
	(A) Hight value of I	(A) Hight value of IE (B) Transition element				
	(C) Isotone with 181	Δr^{38}	(D) None			
35	In a solid "AB" hav	ing NaCl structure "A"	atoms occupy the corne	ers of the cubic unit cell. If all the		
	face-centred atoms	along one of the axes are	removed, then the resul	tant stoichiometry of the solid is		
	$(A) AB_2$	$(B) A_2 B$	$(C) A_4 B_3$	$(D) A_3 B_4$		
36	1-chlorobutane on r	reaction with alcoholic po	otash gives –			
	(A) 1-butene	(B) 1–butanol	(C) 2-butene	(D) 2-butanol		
	TDI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f 1	· 11 L CHO C C	II. CIII.		
37		of carbon atoms in C–C s				
	$(A) sp^3 – sp^3$	(B) sp^2-sp^3	(C) $sp-sp^2$	(D) sp^2-sp^2		
38				ne atmp. It is heated to 600 k when		
		₂ O ₄ (g) decomposes to N				
	(A) 1.2 atm	(B) 2.4 atm	(C) 2.0 atm	(D) 1.0 atm		
39		The state of the s		pressure and volume is one.		
	(A) 4/2 R	(B) 3/2 R	(C) $5/2 R$	(D) zero		
40	The correct order of		(C) N	(D) E 31 E 31 E 41		
	(A) N < Be < B	(B) $F^- < O^{2-} < N^{3-}$	(C) Na $<$ Li $<$ K	(D) $Fe^{3+} < Fe^{2+} < Fe^{4+}$		
	Space for rough work					

41	The r.m.s. velocity of hydrogen is $\sqrt{7}$ times the r.m.s. velocity of nitrogen. If T is the temperature of						
	the gas:						
	(A) T(H2) = T(N2)		(B) $T(H_2) > T(N_2)$				
	(C) $T(H_2) < T(N_2)$		(D) $T(H_2) = \sqrt{7} T(N_2)$				
42	2	e can be distinguished b		2			
		(B) Br ₂ in CCl ₄		(D) AgNO ₃ in ammonia			
43	Ionic radii of:			3			
	(A) $Ti^{4+} < Mn^{7+}$	(B) ${}^{35}\text{Cl}^- > {}^{37}\text{Cl}^-$	$(C) K^+ > Cl^-$	(D) $P^{3+} > P^{5+}$			
44	A gas will approach i						
	(A) low temperature	*	(B) low temperature				
	(C) low pressure and		(D) high temperatur	0 1			
45			rmally and reversibly fro	om 1 litre to 10 litre at 300 K. The			
	enthalpy change (in k	(J) for the process is	(D) 11 41-I				
	(A) 11.4 kJ		(B) –11.4 kJ (D) 4.8 kJ				
40	(C) 0 kJ	· · · · · · · · · · · · · · · · · · ·					
46		owing change $\Delta H \neq \Delta E$		$H(ag) \rightarrow NaCl(ag) + H(O(l))$			
	(A) $H_2(g) + I_2(g)$ — (C) $C(s) + O_2(g)$ —		(B) $HC1(aq) + NaO$ (D) $N_2(g) + 3H_2(g)$	$H(aq) \longrightarrow NaCl(aq) + H_2O(l)$			
				3 -			
47	of Li ⁺ are respectivel	V(approx, value)) + 3e is 19800 kJ/mole	& IE_1 for Li is 520 then IE_2 & IE_1			
	(A) 11775, 7505		(C) 11775 19280	(D) Data insufficient			
48				ries in H–like atom to difference in			
	_	and 3 rd lines of same ser		(D) 5.5:1			
	(A) 2.5 : 1	(B) 3.5:1	(C) 4.5:1	(D) 3.3.1			
49			e degree of dissociated (o	α) of HI(g) is related to equilibrium			
	constant K_p by the ex	xpression					
	1 . 2 /	1 . 21/	2K	$2\sqrt{K}$			
	$(A) = \frac{1+2\sqrt{K_p}}{\sqrt{K_p}}$	(B) $\sqrt{\frac{1+2K_p}{}}$	(C) $\sqrt{\frac{2K_p}{1+2K_p}}$	$(D) \frac{2\sqrt{1-p}}{1-2\sqrt{p}}$			
	2	V 2	$\sqrt{1+2K_p}$	(2) $1+2\sqrt{K_p}$			
50	The vapour density of	of N ₂ O ₄ at a certain ten	perature is 30. What is	the % dissociation of N_2O_4 at this			
	temperature?						
	(A) 53.3%	(B) 106.6%	(C) 26.7%	(D) None			
	Space for rough work						

