

1.
$$\left[\frac{-1 + i\sqrt{3}}{2} \right]^6 + \left[\frac{-1 - i\sqrt{3}}{2} \right]^6 + \left[\frac{-1 + i\sqrt{3}}{2} \right]^5 + \left[\frac{-1 - i\sqrt{3}}{2} \right]^5$$
 is equal to : (C) 2 (D) none

- The distance between a tangent to the parabola $y^2 = 4 A x (A > 0)$ and the parallel normal with gradient 2.
 - (A) 4 A
- (C) 2 A

- If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is:
 - $(A) e^{x}$

4.

5.

-) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$ The system of linear equations x + y z = 6, x + 2y 3z = 14 and $2x + 5y \lambda z = 9$ $(\lambda \in R)$ has a unique solution if (A) $\lambda = 8$ (B) $\lambda \neq 8$ (A) $\lambda = 8$ (B) $\lambda \neq 8$ (C) $\lambda = 7$ (D) $\lambda \neq 7$ If the system of equations x + 2y + 3z = 4, x + py + 2z = 3, $x + 4y + \mu z = 3$ has an infinite number of

solutions then: (A) p = 2, $\mu = 3$

- - (B) p = 2, $\mu = 4$ (C) $3p = 2\mu$
- (D) none of these

Space for rough work

6.

Find numerically the greatest term in the expansion of $(2 + 3 \times)^9$, when x = 3/2. (A) 9C_6 . $(3/2)^{12}$ (B) 9C_3 . $(3/2)^6$ (C) 9C_5 . $(3/2)^{10}$ (D) 9C_4 . $(3/2)^8$

- If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} =$
 - (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$
- If $(\sqrt{3} + i)^{100} = 2^{99} (a + ib)$, then b is equal to $(A) \sqrt{3}$ (B) $\sqrt{2}$
- If $(1 + x)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{10}x^{10}$, then $(a_0 a_2 + a_4 + a_6 + a_8 a_{10})^2 + (a_1 a_3 + a_5 a_7 + a_9)^2$ 9. is equal to (A) 3¹⁰ (D) none of these

(C)1

(D) none of these

- If ω is a cube root of unity and $A = \begin{bmatrix} 1 & \omega & \omega^2 \end{bmatrix}$, then $A^{-1} =$ 10.

Space for rough work

Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ be the roots of $x^2 - 4x + q = 0$. If α , β , γ , δ are in G.P., then the integral values of p and q respectively, are

(A) -2, -32

(B) -2, 3

(C) -6, 3

(D) -6, -32

If $x^p \cdot y^q = (x + y)^{p+q}$ then $\frac{dy}{dx}$ is: (A) independent of p but dependent on q (C) dependent on both p & q

 $\begin{array}{ll} (B) \ \ dependent \ on \ p \ but \ independent \ of \ q \\ (D) \ \ independent \ of \ p \ \& \ q \ both \ . \end{array}$

- **13.** If z_1 , z_2 , z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left\lfloor \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right\rfloor = 1$, then $\begin{vmatrix} z_1 + z_2 + z_3 \end{vmatrix}$ is: (A) equal to 1

(B) less than 1 (C) greater than 3

(D) equal to 3

14 If arg(z) < 0, then arg(-z) - arg(z) =

(A) π

17.

15. If A
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 and B = $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ then AB is equal to

(A) B (B) 3B (C) B³ (D) A + B

16. If
$$f(x) = 2\sin^{-1}\sqrt{1-x} + \sin^{-1}\left(2\sqrt{x(1-x)}\right)$$
 where $x \in \left(0, \frac{1}{2}\right)$ then $f'(x)$ has the value equal to
(A) $\frac{2}{\sqrt{x(1-x)}}$ (B) zero (C) $-\frac{2}{\sqrt{x(1-x)}}$ (D) π

Let
$$A = \begin{bmatrix} x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda \end{bmatrix}$$
, then A^{-1} exists if
(A) $x \neq 0$ (B) $\lambda \neq 0$ (C) $3x + \lambda \neq 0$, $\lambda \neq 0$ (D) $x \neq 0$, $\lambda \neq 0$

18. The co-efficient of
$$x^5$$
 in the expansion of, $(1 + x)^{21} + (1 + x)^{22} + \dots + (1 + x)^{30}$ is:
(A) ${}^{51}C_5$ (B) ${}^{9}C_5$ (C) ${}^{31}C_6 - {}^{21}C_6$ (D) ${}^{30}C_5 + {}^{20}C_5$

19 Let $f(x) = \begin{vmatrix} \cos x & \sin x & \cos x \\ \cos 2x & \sin 2x & 2\cos 2x \end{vmatrix}$ then $f'(\frac{\pi}{2}) =$

Let
$$f(x) = \begin{vmatrix} \cos x & \sin 2x & 2\cos 2x \\ \cos 2x & \sin 2x & 2\cos 2x \\ \cos 3x & \sin 3x & 3\cos 3x \end{vmatrix}$$
 then $f'(\frac{\pi}{2}) =$

(A) 0 (B) -12 (C) 4 (D) 12

Space for rough work

- If the area of the triangle included between the axes and any tangent to the curve $x^n y = a^n$ is constant, then n is equal to

- (C) 3/2
- (D) 1/2

Directions for Questions 21 to 23:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \text{ if } U_1, U_2, \text{ and } U_3 \text{ are columns matrices satisfying } AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AU_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \text{ and } U_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- $AU_3 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. If U is 3 × 3 matrix whose columns are U_1 , U_2 , U_3 then answer the following questions

22.

- The value of |U| is (A) 3
- (C) 3/2
- (D)2

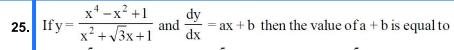
- The sum of the elements of U-1 is
- (C)1
- (D) 3

- The value of [3 2 0] U $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ is

- (C)4

(D) 3/2

- If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the point (1, 1) is:
- (B) $-\frac{3}{8}$



- (A) $\cot \frac{5\pi}{9}$
- (B) $\cot \frac{5\pi}{12}$
- (C) $\tan \frac{5\pi}{12}$

Suppose a, b, c are in A.P. and a^2 , b^2 , c^2 are in G.P. If a < b < c and $a + b + c = \frac{3}{2}$, then the value of 26.

- (A) $\frac{1}{2\sqrt{2}}$
- (C) $\frac{1}{2} \frac{1}{\sqrt{3}}$ (D) $\frac{1}{2} \frac{1}{\sqrt{2}}$

Equation of a straight line passing through the origin and making with x – axis an angle twice the size of the angle made by the line y = 0.2 x with the x - axis, is:

- (B) y = (5/12) x
- (C) 6y 5x = 0
- (D) none of these

Let the co-efficients of x^n in $(1 + x)^{2n}$ & $(1 + x)^{2n-1}$ be P & Q respectively, then $\left(\frac{P + Q}{Q}\right)^5 =$ 28. (A)9

- (B) 27
- (C)81

If the sum of the co-efficients in the expansion of $(1 + 2x)^n$ is 6561, then the greatest term in the expansion for x = 1/2 is :

- (C) 6th
- (D) none of these

Space for rough work

- A light beam emanating from the point A(3, 10) reflects from the straight line 2x + y 6 = 0 and then passes through the point B(4, 3). The equation of the reflected beam is : (A) 3x y + 1 = 0 (B) x + 3y 13 = 0 (C) 3x + y 15 = 0 (D) x 3y + 5 = 0

- Number of ways in which 3 numbers in A.P. can be selected from 1, 2, 3,..... n is: 31.
 - $(\mathsf{A})\bigg(\frac{n-1}{2}\bigg)^2 \text{ if n is even}$

(B) $\frac{n(n-2)}{4}$ if n is odd

(C) $\frac{(n-1)}{4}$ if n is odd

- (D) $\frac{n(n-2)}{4}$ if n is even
- Area of the quadrilateral formed by the lines |x| + |y| = 2 is : (A) 8 (B) 6 (C) 4 32.
- 33. Let T_r be the rth term of an AP, for r = 1, 2, 3, ... If for some positive integers m, n we have $T_{\rm m} = \frac{1}{n} \& T_{\rm n} = \frac{1}{m}$, then $T_{\rm mn}$ equals:
- (B) $\frac{1}{m} + \frac{1}{n}$ (C) 1
- (D) 0
- The number of ordered triplets of positive integers which are solutions of the equation x + y + z = 100
 - (A) 3125
- (B) 5081
- (C)6005
- (D) 4851

35. The equation of the bisector of the angle between two lines 3x - 4y + 12 = 0 and 12x - 5y + 7 = 0 which contains the points (-1, 4) is:

(A)
$$21x + 27y - 121 = 0$$

(B)
$$21x - 27y + 121 = 0$$

(C)
$$21x + 27y + 191 = 0$$

(D)
$$\frac{-3x+4y-12}{5} = \frac{12x-5y+7}{12}$$

36. If $y = \cos^2(45^\circ + x) + (\sin x - \cos x)^2$ then the maximum & minimum values of y are: (A) 2 & 0 (B) 3 & 0 (C) 3 & 1 (D) none

Consider an infinite geometric series with first term 'a' and common ratio r. If the sum is 4 and the 37. second term is 3/4, then:

(A)
$$a = \frac{7}{4}$$
, $r = \frac{3}{7}$

(B)
$$a=2$$
, $r=\frac{3}{8}$

(C)
$$a = \frac{3}{2}$$
, $r = \frac{1}{2}$

(D)
$$a = 3$$
, $r = \frac{1}{4}$

- If $\cot \alpha + \tan \alpha = m$ and $\frac{1}{\cos \alpha} \cos \alpha = n$, then
 - (A) m $(mn^2)^{1/3}$ $n(nm^2)^{1/3}$ = 1 (C) $n(mn^2)^{1/3}$ $m(nm^2)^{1/3}$ = 1

- (B) $m(m^2n)^{1/3} n(nm^2)^{1/3} = 1$ (D) $n(m^2n)^{1/3} m(mn^2)^{1/3} = 1$

- 39
- If $y = (A + Bx) e^{mx} + (m 1)^{-2} e^{x}$ then $\frac{d^{2}y}{dx^{2}} 2m \frac{dy}{dx} + m^{2}y$ is equal to:

 (A) e^{x} (B) e^{mx} (C) e^{-mx} (D) $e^{(1-m)x}$ Suppose $f(x) = e^{ax} + e^{bx}$, where $a \neq b$, and that f''(x) 2f'(x) 15f(x) = 0 for all x. Then the product ab is equal to 40 (\hat{A}) 25 (C) - 15
- The number of integers which lie between 1 and 10° and which have the sum of the digits equal to 12 is: (A) 8550 (B) 5382 (C) 6062 (D) 8055
- If $\sin 2\theta = k$, then the value of $\frac{\tan^3 \theta}{1 + \tan^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta}$ is equal to

- (D) $2 k^2$

(B) $\frac{2-k^2}{k}$ (C) $k^2 + 1$ (Space for rough work

- 43.
- The coefficient of x^{10} in the expansion of $(1 + x^2 x^3)^8$ is (A) 476 (B) 496 (C) 506
- (D) 528

- 44.
- $\begin{vmatrix} \beta & -\gamma \\ -\beta & \gamma \end{vmatrix}$ is orthogonal, then

- (C) $\gamma = \pm \frac{1}{\sqrt{3}}$
- (D) all of these

- 45.
- If A, B are two n × n non-singular matrices, then
- (A) AB is non-singular (C) (AB)⁻¹ = A^{-1} B^{-1}

(B) AB is singular (D) (AB)⁻¹ does not exist

- 46.
- If the tangent at each point of the curve $y = \frac{2}{3}x^3 2ax^2 + 2x + 5$ makes an acute angle with the positive direction of x-axis, then $(B) - 1 \le a \le 1$ $(A) a \ge 1$
 - (C) $a \le -1$
- (D) none of these

- 47.
- Equation of normal drawn to the graph of the function defined as $f(x) = \frac{\sin x^2}{x}$, $x \ne 0$ and f(0) = 0 at the origin

- is: (A) x + y = 0
- (B) x y = 0
- (C) y = 0
- (D) x = 0

- The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is
- (A) $3\sqrt{3}$ sq. units (B) $2\sqrt{3}$ sq. units (C) $4\sqrt{3}$ sq. units (D) $\sqrt{3}$ sq. units

- **49.** If $y = \sin^{-1} \frac{2x}{1 + x^2}$ then $\frac{dy}{dx} \Big|_{x = -2}$ is:
- (C) $-\frac{2}{5}$
- (D) none
- 50. The line which is parallel to x-axis and crosses the curve $y = \sqrt{x}$ at an angle of $\frac{\pi}{4}$ is (A) y = -1/2 (B) x = 1/2 (C) y = 1/4 (D) y = 1/2