

- Consider $y = \frac{2x}{1+x^2}$, then the range of expression, $y^2 + y 2$ is: 1
- (C) [-9/4, 0] (D) [-9/4, 1]
- Expressed in the form $r(\cos\theta + i\sin\theta)$, -2 + 2i becomes :

 - (A) $2\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$ (B) $2\sqrt{2}\left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right]$
- (C) $2\sqrt{2}\left[\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right]$ (D) $\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$ {a₁, a₂,....., a₄,.....} is a progression where a_n = $\frac{n^2}{n^3 + 200}$. The largest term of this progression is: 3
- The value of λ for which the system of equations 2x-y-z=12, x-2y+z=-4, $x+y+\lambda z=4$ has no solution is

5

- (A) 3 (B) -3 (C) 2 The sum to 10 terms of the series $\sqrt{2}$ + $\sqrt{6}$ + $\sqrt{18}$ + $\sqrt{54}$ + ... is
- (A) 121 ($\sqrt{6} + \sqrt{2}$) (B) $\frac{121}{2}$ ($\sqrt{3} + 1$) (C) 243 ($\sqrt{3} + 1$) (D) 243 ($\sqrt{3} 1$)

If one root of the equation $x^2 + px + q = 0$ is the square of the other, then (A) $p^3 + q^2 - q(3p + 1) = 0$ (B) $p^3 + q^2 + q(1 + 3p) = 0$ (C) $p^3 + q^2 + q(3p - 1) = 0$ (D) $p^3 + q^2 + q(1 - 3p) = 0$ 6

(A)
$$p^3 + q^2 - q(3p + 1) = 0$$

(C) $p^3 + q^2 + q(3p + 1) = 0$

(B)
$$p^3 + q^2 + q(1+3p) = 0$$

(D) $p^3 + q^2 + q(1-3p) = 0$

If $x^2 + 2ax + 10 - 3a > 0$ for all $x \in R$, then (A) - 5 < a < 2 (B) a < -57

$$(A) - 5 \le a \le 2$$

$$a < -5$$

(C)
$$a > 5$$
 (D) $2 < a < 5$

If $\begin{vmatrix} 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then: (A) x = 3, y = 1 (B) x = 1, y = 3 (C) x = 0, y = 3 (D) x = 0, y = 08

$$(A) \mathbf{v} = 3 \mathbf{v} =$$

(B)
$$x = 1$$
. $y = 3$

(C)
$$x = 0$$
 $y = 3$

(D)
$$x = 0$$
, $y = 0$

The sum of the series $\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + \dots + \frac{1}{\log_{2^n} 4}$ is

(A)
$$\frac{1}{2}$$
 n (n + 1)

(A)
$$\frac{1}{2}$$
 n (n + 1) (B) $\frac{1}{12}$ n (n + 1) (2n + 1) (C) $\frac{1}{n(n+1)}$ (D) $\frac{1}{4}$ n (n + 1)

(C)
$$\frac{1}{n(n+1)}$$

(D)
$$\frac{1}{4}$$
 n (n + 1)

If hyperbola $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ passes through the focus of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then eccentricity of hyperbola is

(A)
$$\sqrt{2}$$

(B)
$$\frac{2}{\sqrt{2}}$$

(C)
$$\sqrt{3}$$

If $(\sqrt{3} + i)^{100} = 2^{99}$ (a + ib), then b is equal to

(A) $\sqrt{3}$

(B) $\sqrt{2}$

(C)1

(D) none of these

 $1 \quad 1+i+\omega^2$ If $\omega(\neq 1)$ is a cube root of unity, then |1-i|equals: 12 -i $-i+\omega-1$

(A) 0

(B) 1

(C) i

IIT '95,

If P(1, 2), Q(4, 6), R(5, 7) & S(a, b) are the vertices of a parallelogram PQRS, then:

(A) a = 2, b = 4

(B) a = 3, b = 4

(C) a = 2, b = 3

(D) a = 3, b = 5

The diagonals of a parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7. Then PQRS must be

(A) rectangle

(B) square

(C) cyclic quadrilateral

(D) rhombus

The length of a longest interval in which the function $3\sin x - 4\sin^3 x$ is increasing, is

(A) $\frac{\pi}{3}$

(B) $\frac{\pi}{2}$

(C) $\frac{3\pi}{2}$

(D) π

The equation of a hyperbola with co-ordinate axes as principal axes, if the distances of one of its vertices from the foci are 3 & 1 can be : (A) $3x^2 - y^2 = 3$ (B) $x^2 + 3y^2 + 3 = 0$ (C) $x^2 - 3y^2 - 3 = 0$ (D) none 16

If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the point (1, 1) is: 17

(B) $-\frac{3}{8}$ (C) $-\frac{5}{12}$

(D) none

 $\begin{vmatrix} \cos^2\theta & \cos\theta\sin\theta & -\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta & \cos\theta \\ \sin\theta & -\cos\theta & 0 \end{vmatrix} \ \, then \ \, f\bigg(\frac{\pi}{6}\bigg) =$ 18

(D) none

The interval in which $f(x) = x^3 - 3x^2 - 9x + 20$ is strictly decreasing 19

(B) $(3,\infty)$

(C) $\left(-\infty, -1\right)$

(D) (5,9)

The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to the x-axis is 20

(A) y = 1

(B) y = 2 (C) y = 3

(D) y = 0

- 21 The angle between the curves $y = x^3$ and $y = e^{3(x-1)}$ at (1, 1) is
 - (A) 0
- (B) $\frac{\pi}{6}$
- (C) $\frac{\pi}{4}$
- (D) $\frac{\pi}{2}$
- The number of ways of arranging the letters of the word DEVIL so that neither D is the first letter nor L is the last letter is
 - (A) 36
- (B) 114
- (C)42
- (D) 78
- The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minimum at
 - (A) x = -2
- (B) x = 0
- (C) x = 1
- (D) x = 2
- Angle between the tangents to the curve $y = x^2 5x + 6$ at the points (2, 0) and (3, 0) is
 - (A) $\pi/2$
- (B) $\pi / 6$
- (C) $\pi/4$
- (D) $\pi/3$
- A function is matched below against an interval where it is supposed to be increasing, Which of the following pairs is incorrectly matched?

Interval

Function

(A) $\left(-\infty, -4\right]$

 $x^3 + 6x^2 + 6$

(B) $\left(-\infty, \frac{1}{3}\right)$

 $3x^2 - 2x + 1$

 $(C)(2,\infty)$

 $2x^3 - 3x^2 - 12x + 6$

(D) $\left(-\infty,\infty\right)$

 $x^3 - 3x^2 + 3x + 3$

The line 5x + 12y = 9 touches the hyperbola $x^2 - 9y^2 = 9$ at the point (A) (-5, 4/3) (B) (5, -4/3) (C) (3, -1/2)26

(D) none of these

If the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ & the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide then the value of b² is : (A) 4 (D) none 27

A particle moves along a line by $S = t^3 - 9t^2 + 24t$ the time when its velocity decreases. 28

(A) t > 3

(C) t < 3

Total number of four digit odd numbers that can be formed using 0, 1, 2, 3, 4, 5, 7 are 29

(B) 375

(C) 1176

A box contains 5 different red and 6 different white balls. In how many ways can 6 30 balls be selected so that there are at least two balls of each colour

(B) 426

(C)452

cos20°+8sin70°sin50°sin10° is equal to: 31 sin²80° (A) 1 (B) 2 (C) 3/4 (D) none If $\cos A = 3/4$, then the value of $16\cos^2{(A/2)} - 32\sin{(A/2)}\sin{(5A/2)}$ is (A) -4 (B) -3 (C) 3 (D) 4 If $y = \cos^2{(45^2 + x)} + (\sin x - \cos x)^2$ then the maximum & minimum values of y are: (A) 2 & 0 (B) 3 & 0 (C) 3 & 1 (D) none 32 33 If the curves $ay + x^2 = 7$ and $x^3 = y$ cut orthogonally at (1, 1) then a =(B) -6(D) 1/6 A polygon has 35 diagonals. The number of its sides are 35 (C) 10(A) 8(B) 9 (D) 11 Space for rough work

9860237373

- When the origin is shifted to a point P, the point (2, 0) is transformed to (0, 4) then the 36 coordinates of P are
 - (A) (2,-4)
- (B) (-2,4)
- (C)(-2,-4)
- (D) (2,4)
- If $\bar{\alpha}$ and β are the roots of $x^2 2x + 4 = 0$ then the value of $\alpha^6 + \beta^6$ is
 - (1) 32
- (2)64
- (3)128
- (4)256

38

- x + y + zX x + yIf $\begin{vmatrix} 2x & 3x + 2y & 4x + 3y + 2z \end{vmatrix} = 64$, then the real value of x is
- 3x + 6x + 3y + 10x + 6y + 3z
- (A)2
- (B)3
- (C)4
- (d) 6
- A ray of light passing through the point (8,3) and is reflected at (14,0) on x axis. Then the 39 equation of the reflected ray
 - (A) x+y=14
- (B) x-y=14
- (C) 2y=x-14
- (D) 3y=x-14
- If repetitions are not allowed, the number of numbers consisting of 4 digits and divisible by 5 and formed out of 0, 1, 2, 3, 4, 5, 6 is
 - (A) 220
- (B) 240
- (C)370
- (D) 588

Directions to Questions 41 to 45:

Derivatives can be used (i) to determine rate of change of quantities, (ii) to find the equations of tangent and normal to a curve at a point, (iii) to find turning points on the graph of a function which in turn will help us to locate points at which largest or smallest value (locally) of a function occurs. Derivatives can also be used to find intervals on which a function is increasing or decreasing and to find approximate value of certain quantities.

- The approximate value of $\sqrt{1.02}$ is 41
 - (A) 1.01
- (B) 1.001
- (C) 1.0001
- (D) 1.1001

- The approximate value of $\sqrt[5]{33}$ is 42
 - (A) 2.0125
- (B) 2.1
- (C) 2.01
- (D) 3.258
- If the percentage error in the surface area of sphere is k, then the percentage error in its 43 volume is
 - (A) $\frac{3k}{2}$

- (B) $\frac{2k}{3}$ (C) $\frac{k}{3}$ (D) $\frac{4k}{3}$
- If an error of $\left(\frac{1}{10}\right)$ % is made in measuring the radius of a sphere then percentage error
 - in its volume is
 - (A) 0.3
- (B) 0.03
- (C) 0.003
- (D) 0.0003
- The height of a cylinder is equal to its radius. If an error of 1 % is made in its height. Then the percentage error in its volume is
- (B) 2
- (D) 4

- The number of words that can be formed from the letters of the word "INTERMEDIATE" in which no two vowels are together is

- (B) $\frac{6!}{2!} \frac{{}^{7}P_{6}}{2!3!}$ (C) $\frac{6!}{2!3!} \frac{{}^{7}P_{6}}{2!3!}$ (D) $\frac{(7!)}{2!3!} {}^{7}P_{6}}{2!3!}$
- The number of more words can be found by rearranging the letters of the word 'CHEESE' are
 - (A) 119
- (B) 120
- (C)720
- If the product of the roots of the equation $x^2 5kx + 2e^{4lnk} 1 = 0$ is 31, then sum of the 48 root is
 - (A) 10
- (B) 5

- The solutions of the equation $4\cos^2 x + 6\sin^2 x = 5$ are 49

- (A) $x = n\pi \pm \frac{\pi}{4}$ (B) $x = n\pi \pm \frac{\pi}{3}$ (C) $x = n\pi \pm \frac{\pi}{2}$ (D) $x = n\pi \pm \frac{2\pi}{3}$
- 23 C₀ + 23 C₂ + 23 C₄ + .. + 23 C₂₂ equals

(A) $2^{23}-2$ (B) 2^{22} (C) 2^{11} (D) $\frac{2^{10}-4^{10}}{2}$ Space for rough work

- A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of 51 the abscissa, is
 - (A)(2,4)
- (B) (2, -4) (C) $\left(-\frac{9}{8}, \frac{9}{2}\right)$ (D) $\left(\frac{9}{8}, \frac{9}{2}\right)$
- The term independent of x in $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^9$ is 52
 - (A) 5
- (B) 6
- (D) 8
- The value of the greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$ is 53
 - (A) 2871.11
- (B) 2871
- (C) 2872
- (D) 2873
- Let $\Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix}, 0 \le \theta \le 2\pi$. The 54
 - (A) $\Delta = 0$
- (B) $\Delta \in (2, \infty)$
- (C) $\Delta \in (2,4)$ (D) $\Delta \in [2,4]$
- A particle is moving along a line such that $s = 3t^3 8t + 1$. Find the time 't' when the 55 distance 'S' travelled by the particle increases.
- (A) $t > \frac{2\sqrt{2}}{3}$ (B) $t < \frac{2\sqrt{2}}{3}$ (C) $t < \frac{-2\sqrt{3}}{\sqrt{2}}$
- (D) t = 0

- If $(1 + ax)^n = 1 + 8x + 24x^2 + \dots$, then the values of a and n are equal to
 - (A) 2, 4
- (B) 2, 3
- (C) 3, 6
- (D) 1, 2
- The product of middle terms in the expansion of $\left(x + \frac{1}{x}\right)^{11}$ is equal to 57

 - $(A) \ ^{11}C_{6}^{\ 11}C_{6} \qquad \qquad (B) \ ^{11}C_{5}^{\ 11}C_{6} \bigg(\frac{1}{x}\bigg) \qquad (C) \ ^{11}C_{5}^{\ 11}C_{6} \big(x\big) \qquad (D) \ \Big(^{11}C_{6}\Big)^{2} \ x^{2}$
- If $\Delta = \begin{vmatrix} 1+y & 1-y & 1-y \\ 1-y & 1+y & 1-y \\ 1-y & 1-y & 1+y \end{vmatrix} = 0$, then value of y are

58

- (B) 2, -1
- (C) -1, 3
- (D) 0, 2
- 59 The real number x (x > 0) when added to its reciprocal gives the minimum sum at xequals
 - (A) 2
- `(B) 1
- (C) -1
- (D) -2
- The normal to the curve $x^2 + 2xy 3y^2 = 0$ at (1,1)60
 - (A) does not meet the curve again
 - (B) meet the curve again in second quadrant
 - (C) meet the curve again in the third quadrant
 - (D) meet the curve again in forth quadrant