

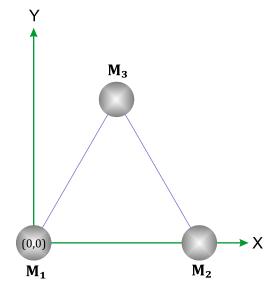
JEE ANSWER BOOKLET

SUBJECTIVE ASSESSMENT - I

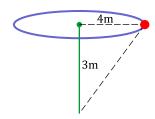
Ac. Yr. 2018-2019

	_												 	
NAME OF STUDENT:														

CHAPTERS: ROTATIONAL MECHANICS


IONIC EQUILIBRIUM

DIFFERENTIATION AND APPLICATION OF DERIVATIVES


DATE OF ASSESSMENT / / / /

MARKS SCORED

Q.1. (a) Locate the centre of mass of a system of particles of masses $m_1 = 1$ kg, $m_2 = 2$ kg and $m_3 = 3$ kg, situated at the corners of an equilateral triangle of side 1 metre.

- Q.1. (b) A particle of mass 10 kg is moving in a circle of 4 m radius with a constant speed of 5 m/sec. What is the angular momentum about:
- (i) the centre of the circle?
- (ii) and 3 m distant from its centre?
- (iii) Which one of these will always be in the same direction?

JESTI	ONS TO BE SOLVED ON THIS PAGE: Q.1.	
		Rough Work
		HUUGH WUKK

QULU.	IONS TO BE SOLVED ON THIS PAGE: Q.2.	
oulley of a Calculate: (i) the ten (ii) the acc	nasses $m_1 = 15$ kg and $m_2 = 10$ kg are attached to the ends of a cord van Atwood's machine. The mass of the pulley is $M = 10$ kg and its radission in the cord celeration a of the system umber of revolutions made by the pulley at the end of 2 seconds fron	us is R = 0.1 metre.
		$\mathbf{m_1}$
		Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.3.

Q.3. On the flat surface of a disc of radius a, a small circular hole of radius b is made with its centre at a distance c from the centre of the disc.

If mass of the whole uncut disc is M,

Calculate:

- (i) the new position of the centre of mass if centre of mass of uncut disc is the origin.

oment of inertia of the holed disc about the axis of the circular h	oie.
	Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.4.

Q.4. If the tangent at a point (1, 2) on the curve $y = ax^2 + bx + 7/2$ be parallel to the normal at point (-2, 2) on the curve $y = x^2 + 6x + 10$,, then find the value of a and b.

Rough Work
HOOGH WORK

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.5.

Q.5. For a given curved surface of a right circular cone, show that the volume is maximum when the semi-vertical angle of the cone is $\sin^{-1}(1/\sqrt{3})$

Dove Mone
Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.6.

\sim	_		.1		1 1		- C - I	C - 11		C	1		l intervals:
. 1	h	HINA	Than	Traatact	วทุก เคา	ICT WALLE	AT THA	TALLA	man 1	HINCHANC	an th	O INAICSTOC	i intorvale:
v	.U.	rinu	LIIC 2	realest	anu ica	ist values	OI LIIC	IVIIV	/V I I I I 2 I	uncuvns	VIII LIII	c illulcatet	i iiilei vais.

- (i) f(x) = 2x(ii) f(x) = x

g x on [1, e]	
	Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.7.

Q.7. The degree of ionization of a 0.1M bromoacetic acid solution is 0.132. Calculate the pH of the solution and the pK_a of bromoacetic acid.

Rough Work
HOOGH WOOK

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.8.

l'ha cancantratian at a	culphido ion in 0.1M HCl colution	e caturated with hydrogen culphide	ic
10^{-19} M. If 10 mL of th	nis is added to 5 mL of 0.04 M sol	n saturated with hydrogen sulphide ution of the following: $FeSO_4$, $MnCl_2$,	ZnCl ₂
CdCl ₂ . in which of thes	se solutions precipitation will tal	ke place?	- 2
		Rough	Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.9.

Q.9. The ionization constant of nitrous acid is 4.5 \times 10 $^{\!\!^{-4}}\!$. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

_
Rough Work

9860237373

ROUGH WORK

ROUGH WORK

