

<u>Marking Scheme</u>: Four questions carry 10 marks each. Questions have 3 subparts each. Subparts (a) and (b) carry 3 marks each and subpart (c) carries 4 marks.

Question 1:

a. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

b. In figure below, AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE.

c. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that

(i) $\triangle ABD \cong \triangle BAC$

(ii) BD = AC

(iii)
$$\angle ABD = \angle BAC$$
.

Question 2:

a. In figure below, if $QT \perp PR$, $\angle TQR = 40^{\circ}$ and $\angle SPR = 30^{\circ}$, find x and y.

b. if PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.

c. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that

(i) $\Delta ABE \cong \Delta ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle

Question 3:

a. $\angle X = 62^\circ$, $\angle XYZ = 54^\circ$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

b. If
$$x + \frac{1}{x} = 3$$
, find the value of $x^4 + \frac{1}{x^4}$

c. Line l is the bisector of an angle ∠ A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠ A.
Show that:

(i) \triangle APB $\cong \triangle$ AQB (ii) BP = BQ

