JEE ANSWER BOOKLET SUBJECTIVE ASSESSMENT - I AC. YR. 2018-2019			
NAME OF STUDENT :			
CHAPTERS: ELECTROSTATICS LIMITS, CONTINUITY AND DIFFERENTIABILITY SOLID STATE DATE OF ASSESSMENT			
1. Consider a system of three charges $q/3$, $q/3$ and $-2q/3$ placed at points A, B and C respectively as			

Q.1. Consider a system of three charges q/3, q/3 and -2q/3 placed at points A, B and C respectively as shown in the figure. Take O to be the centre of the circle of radius R and angle CAB = 60°. Find:

a. Magnitude of electric field and its direction at O

b. Magnitude of total force on C and its direction

c. Potential at O

d. Total work done to bring a unit positive charge from infinity to point 0

e. Potential energy of the system

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.1.

Rough Work
-
-
_
_
_
_
_

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.2.

Q.2. Four charges q, 2q, 3q, 4q are placed at corners A, B, C and D of a square as shown below in the figure. Find:

a. The field at centre O of square.

- b. Work done to move a 2 C charge from A to O
- c. Work done to move a 2 C charge from 0 to B

d. Work done to move a 2 C charge from A to B through O

-Q A L L H H H H H H H H H H H H H H H H H	+2Q
	Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.3.

Q.3. a. The electric potential V as a function of distance x (in metre) is given by V = $(5x^2 + 10x - 9)$ volt. Find the value of electric field at x = 1 m.

b. Three large parallel plates have uniform surface charge densities as shown in the figure. Find out electric field intensity at point P.

	σ _2σ _ σ	• P	$\hat{k} z = a$ $z = -a$ $z = -2a$
		Rough	WORK

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.4.

Q.4. Discuss the continuity & differentiability of the function $f(x) = \sin x + \sin |x|$. Draw a rough sketch of the graph of f(x).

GRAPH	A		
SIGN II			
(
	4		

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.5.

Q.5. Examine the continuity and differentiability of f(x) = |x| + |x - 1| + |x - 2|. Also draw the graph of f(x).

GRAPH	^		
•		•	
	₩		

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.6.

Q.6. If $x^y + y^x = 2$ then find dy/dx.

	Rough Work
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.7.

Q.7. An element crystallizes in a structure having FCC unit cell of an edge 200 pm. Calculate the density, if 200 g of this element contains 24×10^{23} atoms.

Rough Work

QUESTIONS TO BE SOLVED ON THIS PAGE: Q.8.

Q.8. The edge length of unit cell of a metal having atomic weight 75 g/mol is 5 Å which crystallizes in cubic lattice. If the density is 2 g/cc then find the radius of metal atom. ($N_A = 6 \times 10^{23}$). Give the answer in pm.

 Rough Work

ROUGH WORK

ROUGH WORK

ROUGH WORK
