

## **PRACTICE WORKSHEET**

**Subject:** Mathematics

Class: CBSE 10<sup>th</sup>

**Chapter:** Polynomials

Worksheet: M-2

1. Using division algorithm, find the quotient and the remainder on dividing f(x) by g(x), where

 $f(x) = 6x^3 + 13x^2 + x - 2$  and g(x) = 2x + 1

- 2. Divide  $2x^2 + 3x + 1$  by x + 2.
- 3. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:

(i)  $6x^2 - 3 - 7x$ 

(ii)  $4u^2 + 8u$ 

- 4. If  $\alpha$ ,  $\beta$  are the zeros of  $2y^2 + 7y + 5$  write the value of  $\alpha + \beta + \alpha \beta$ .
- 5. If x=1 is a zero of a polynomial  $f(x) = x^3 2x^2 + 4x + k$ . Write the value of k
- 6. Find a quadratic polynomial each with the given zeros as sum and the product of its zeros respectively
  - (a) ¼, -1 (b) √2 , 1/3
- 7. Find the zeros of a quadratic polynomial  $5x^2$  4-8x and verify the relationship between the zeros and the coefficients of the polynomial.
- 8. Find all other zeroes of the polynomial  $p(x) = 2x^3 + 3x^2 11x 6$ , if one of its zero is -3.
- 9. Find all the zeros of  $2x^4-9x^3+5x^2+3x-1$ , if two of its zeros are  $2+\sqrt{3} \& 2-\sqrt{3}$ .
- 10. If (x + a) is a factor of  $2x^2+2ax+5x+10$ . Find a.
- 11. If the polynomial  $6x^4 + 8x^3 + 17x^2 + 21x + 7$  is divided by another polynomial  $3x^2 + 4x + 1$ , the remainder comes out to be (ax + b), find a and b.
- 12. On dividing  $x^3+2x^2-5x-6$  by a polynomial g(x) the quotient and remainder were x+1 and -4x-4 respectively Find the polynomial g(x).
- 13. On dividing  $x^3 3x^2 + x + 2$  by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).