

Marking Scheme: Four questions carry 10 marks each. Questions have 3 subparts each. Subparts (a) and (b) carry 3 marks each and subpart (c) carries 4 marks.

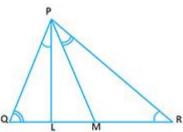
Question 1:

- a. Show that: $\tan 10^\circ \tan 15^\circ \tan 75^\circ \tan 80^\circ = 1$
- b. If $\theta = 30^\circ$, prove that $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
- c. In Δ ABC, P is a point on AB, AP:PB =2:3. PQ || BC and is extended to Q so that CQ || BA. Find:
 (i) area Δ APO : area Δ ABC
 (ii) area Δ APO : area Δ CQO

Question 2:

- a. In a triangle ABC, right angled at B, $\tan A = 5$. Find the value of $\sin A$, $\operatorname{cosec} A$ and $\cos A$.
- b. Rs. 480 is divided equally among x children. If the number of children were 20 more then each would have got Rs.12 less. Find x
- c. A hotel bill for a number of people for overnight stay is Rs.4,800. If there were 4 people more, the bill each person had to pay, would have reduced by Rs.200. find the number of people staying overnight.

Question 3:


- a. A car covers a distance of 400 km at certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.
- b. Without solving the following quadratic equation, find the value of 'p' for which the roots are equal. $px^{2}-4x+3=0$
- c. In \triangle PQR, L and M are two points on the base QR, such that \angle LPQ = \angle QRP and \angle RPM = \angle RQP. Prove that:
 - (i) Δ PQL $\sim \Delta$ RPM
 - (ii) $QL \times RM = PL \times PM$
 - (iii) $PQ^2 = QR \times QL$.

Question 4:

- a. A two digit number is such that the products of the digits is 6. When 9 is added to the number, the digits interchange their places. Find the number.
- b. Find m, if the roots are equal:

$$x^{2} + 2(m-1)x + (m+5) = 0$$

- c. In the given figure Δ ABC $\,$ is a right angled triangle with \angle BAC = 90° .
 - (i) Prove Δ ADB $\sim \Delta$ CDA
 - (ii) If BD = 18 cm and CD = 8 cm, find AD
 - (iii) Find the ratio of the area of triangle ADB is to area of triangle CDA.

