

Marking Scheme: Four questions carry 10 marks each. Questions have 3 subparts each. Subparts (a) and (b) carry 3 marks each and subpart (c) carries 4 marks.

Question 1:

a. Simplify:

$$4t - (2p + 2t) - (-5p + 3t)$$

- b. i. Subtract 3x + y 3z from 9x 5y + zii. Write down all the factors of $3x^2y$.
- c. i. Add: $5x^2 + 7y 8$, $4y + 7 2x^2$ and $6 5y + 4x^2$. ii. Expand:

$$\left(\frac{3}{2}m + \frac{2}{3}n\right)\left(\frac{3}{2}m - \frac{2}{3}n\right)$$

Question 2:

- a. i. Find the remainder when $5x^2 + 12x + 1$ is divided by (x + 2). ii. Evaulate 29³ using identities
- b. Evaluate: $\sqrt[3]{(27 \times 64)}$.
- c. Find the quotient and remainder when $(7 + 15x 13x^2 + 5x^3)$ is divided by $(4 3x + x^2)$. Question 8:

Question 3:

- a. i. Find the cube root of (-125/512)ii. Use the Identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following: 501×502
- b. Find the smallest number to multiply 11025 so as to get a perfect cube.
- c. i. Find the smallest number by which 1944 must be multiplied so that the product is a perfect cube. ii. What least number must be multiplied to 6912 so that the product becomes a perfect cube?

Question 4:

- a. State true or false:
 - (i) Cube of any odd number is even.
 - (ii) A perfect cube does not end with two zeros.
 - (iii) If square of a number ends with 5, then its cube ends with 25.
 - (iv) There is no perfect cube which ends with 8.
 - (v) The cube of a two digit number may be a three digit number.
 - (vi) The cube of a two digit number may have seven or more digits.
- b. Expand using identities:
 - (i) $(b-7)^2$ (ii) $(xy+3z)^2$ (iii) $(6x^2-5y)^2$
- c. i. Multiply the binomials:

(i) (2x + 5) and (4x - 3)

(ii) (y-8) and (3y-4)

ii. Subtract 3pq(p-q) from 2pq(p+q).