

Marking Scheme: All questions carry 10 marks each. Subparts (A) and (B) carry 3 marks each and subpart (C) carries 4 marks.

Question 1:

- 1. What are isotopes, isobars and isotones? Also give an example of each.
- 2. Write Einstein's mass energy equivalence relation and calculate the nuclear energy in MeV released due to loss of mass by 1 a.m.u.
- 3. State four difference between Nuclear fission and Nuclear fusion

Question 2:

- 1. State one safety precaution for each of the following
 - i. In handling a radioactive source
 - ii. In establishment of nuclear power plant
 - iii. In safe disposal of nuclear waste
- 2. State one medical use, one scientific use and one industrial use of radio isotopes.
- 3. Answer the following questions:
 - i. What are background radiations? State the two sources of background rations along with an example of each
 - ii. How does the mass number and atomic number of an element change when it undergoes gamma decay?

Question 3:

- 1. Arrange Alpha, Beta and Gamma rays in ascending order of:
 - iii. Penetrating power
 - iv. Ionizing power
 - v. Biological effect
- 2. An element ${}^{A}_{Z}X$ decays to ${}^{223}_{85}R$ after emitting 2 alpha and 1 Beta particle. Find the atomic number and atomic mass of element X
- 3. A Uranium nucleus ${}^{238}_{92}U$ undergoes several disintegrations and ultimately decays into lead Nucleus ${}^{206}_{82}Pb$. How many alpha and Beta particles are emitted in the process?