CBSE Board Class XI Mathematics Sample Paper – 6

Time: 3 hrs Total Marks: 100

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consist of 29 questions.
- 3. Questions 1 4 in Section A are very short answer type questions carrying 1 mark each.
- 4. Questions 5 12 in Section B are short-answer type questions carrying 2 mark each.
- 5. Questions 13 23 in Section C are long-answer I type questions carrying 4 mark each.
- 6. Questions 24 29 in Section D are long-answer type II questions carrying 6 mark each.

SECTION - A

- **1.** Find the derivative of $\cos[\sin \sqrt{x}]$.
- 2. Write negation of: "Either he is bald or he is tall."
- 3. Express $\frac{6}{-i}$ in the form of b or bi where b is a real number.

OR

Find modulus of $\sin \theta - i \cos \theta$.

4. Two coins tossed simultaneously, find the probability that getting two heads.

SECTION - B

- **5.** A and B are sub-sets of U where U is universal set containing 700 elements. n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$. Find $n(A' \cap B')$.
- **6.** If the function $f: N \to N$ is defined by $f(x) = \sqrt{x}$ then find $\frac{f(25)}{f(16) + f(1)}$.

OR

If
$$f(x) = x^2 - 1$$
 and $g(x) = \sqrt{x}$ find $f \circ g(x) = ?$

7. Find the range of the function f(x) = |x - 3|

OR

Let a and B be two sets such that : n(A) = 50, $n(A \cup B) = 60$ and $n(A \cap B) = 10$. Find n(B) and n(A - B).

- **8.** Let $A = \{6, 8\}$ and $B = \{3, 5\}$. Write $A \times B$ and $A \times A$.
- 9. Prove that: $\left(\frac{\cos A}{1-\tan A}\right) \left(\frac{\sin A}{1-\cot A}\right) = \frac{1}{\cos A \sin A}$

OR

Prove that $\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$

- **10.** By giving an example, show that the following statement is false. "If n is an odd integer, then n is prime."
- **11.** If a, b, c are in GP then prove that $\log a^n$, $\log b^n$ and $\log c^n$ are in AP.
- **12.** The focal distance of a point on the parabola $y^2 = 12x$ is 4. Find the abscissa of this point.

SECTION - C

- **13.** If $\tan (\pi \cos \theta) = \cot (\pi \sin \theta)$ prove that $\cos \left(\theta \frac{\pi}{4} \right) = \pm \frac{1}{2\sqrt{2}}$.
- **14.** Let a relation R_1 on the set of R of all real numbers be defined as $(a, b) \in R_1 \Leftrightarrow 1 + ab > 0$ for all $a, b \in R$. Show that $(a, a) \in R_1$ for all $a \in R$ and $(a, b) \in R_1 \Rightarrow (b, a) \in R_1$ for all $a, b \in R$.
- **15.** Prove that $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{3\pi}{9} \cos \frac{4\pi}{9} = \frac{1}{2^4}$.
- **16.** If x = a + b, $y = a\alpha + b\beta$, $z = a\beta + b\alpha$ where α, β are complex cube root of unity. Show that $xyz = a^3 + b^3$.
- **17.** A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random from the bag, find the probability that they are not of the same colour.
- **18.** The sums of first p, q, r terms of an AP are a, b, c respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$

19. How many different numbers can be formed with the digits 1, 3, 5, 7, 9 when takes all at a time, and what is their sum?

OR

A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. Find the number of choices available to him.

20. Find all the points on the line x + y = 4 that lie at a unit distance from the line 4x + 3y = 10.

OR

Find the equation of the internal bisector of angle BAC of the triangle ABC whose vertices A, B, C are (5, 2), (2, 3) and (6, 5) respectively.

21. If in a
$$\triangle ABC$$
, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$ prove that a^2 , b^2 , c^2 are in AP.

Prove that
$$\frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} = -\cos 2x - \cos x$$

22. Find the value of k, if
$$\lim_{x\to 1} \frac{x^4-1}{x-1} = \lim_{x\to k} \frac{x^3-k^3}{x^2-k^2}$$

23. Using binomial theorem, prove that 6^n – 5n always leaves the remainder 1 when divided by 25.

- 24. Prove that
 - 1. tan3A tan2AtanA = tan3A tan2A tanA
 - 2. $\cot A \cot 2A \cot 2A \cot 3A \cot 3A \cot A = 1$

OR

If
$$A = \cos^2 \theta + \sin^4 \theta$$
 prove that $\frac{3}{4} \le A \le 1$ for all values of θ .

25. Find the mean deviation about the median for the following data:

X	10	15	20	25	30	35	40	45
f	7	3	8	5	6	8	4	9

26. If
$$\frac{\pi}{2} \le x \le \pi$$
 and $\tan x = -\frac{4}{3}$, find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$, $\tan \frac{x}{2}$.

27. Solve the following system of inequalities graphically:

$$3x + 2y \le 150$$
; $x + 4y \ge 80$; $x \le 15$; $x \ge 0$; $y \ge 0$

OR

How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

- **28.** If the coefficients of a^{r-1} , a^r and a^{r+1} in the binomial expansion of $(1 + a)^n$ are in AP, prove that $n^2 n(4r + 1) + 4r^2 2 = 0$
- **29.** Along a road lie an odd number of stones placed at intervals of 10 m. These stones have to be assembled around the middle stone. A person can carry only one stone at a time. A man carried the job with one of the end stones by carrying them in succession. In carrying all the stones he covered a distance of 3 km. Find the number of stones.

OR

Find the sum of an infinitely decreasing GP, whose first term is equal to b +2 and the common ratio to 2/c, where b is the least value of the product of the roots of the equation $(m^2 + 1)x^2 - 3x + (m^2 + 1)^2 = 0$ and c is the greatest value of the sum of its roots.