CBSE Board Class XI Mathematics Sample Paper – 9

Time: 3 hrs Total Marks: 100

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consist of 29 questions.
- 3. Questions 1 4 in Section A are very short answer type questions carrying 1 mark each.
- 4. Questions 5 12 in Section B are short-answer type questions carrying 2 mark each.
- 5. Questions 13 23 in Section C are long-answer I type questions carrying 4 mark each.
- 6. Questions 24 29 in Section D are long-answer type II questions carrying 6 mark each.

SECTION - A

- 1. Find $\lim_{x\to 0} \frac{\sin ax}{bx}$
- 2. Is the given sentence statement? Justify. "There are 35 days in a month."
- **3.** Write in the form of $a + bi : \frac{1}{i-1}$

OR

Find modulus of 2i.

4. If variance of 20 observations is 5. If each observation is multiplied by 2, then find variance of the new observations.

SECTION - B

- **5.** Let $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$ verify that $A \times C$ is a subset of $B \times D$.
- **6.** Let f be defined by f(x) = x 4 and g be defined by

$$g(x) = \frac{x^2 - 16}{x + 4}$$

$$= \lambda \qquad x \neq -4$$

$$= x + 4$$

Find λ such that f(x) = g(x) for all x.

OR

Find domain and range of the function $f(x) = \frac{x^2 - 9}{x - 3}$

7. Assuming that a person of normal sight can read print at such a distance that the letters subtend an angle of 5' at this eye, find the height of the letters that he can read at a distance of 12 m.

OR

If the arcs of the same length in two circles subtend angles of 60° and 75° at their centres. Find the ratio of their radii.

- **8.** If n(U) = 600, n(A) = 460, n(B) = 390 and $n(A \cap B) = 325$ then find $n(A \cup B)$ and $n(A \cup B)$ '
- 9. Prove that $sin(\theta + 30^\circ) = cos \theta + sin(\theta 30^\circ)$

OR

Prove that
$$\frac{\sin 7A - \sin 5A}{\cos 5A + \cos 7A} = \tan A$$

10. Find compound statements of the "It is raining and it is cold."

11. If
$$f(x) = x^2$$
 find $\frac{f(1.1) - f(1)}{1.1 - 1}$

12. Find the equation of line joining the points (-1, 3) and (4, -2).

SECTION - C

13. Prove that
$$\frac{\cos^2 33^\circ - \cos^2 57^\circ}{\sin^2 \frac{21^\circ}{2} - \sin^2 \frac{69^\circ}{2}} = -\sqrt{2}$$

- **14.** If f is a real function defined by $f(x) = \frac{x-1}{x+1}$ then prove that $f(2x) = \frac{3f(x)+1}{f(x)+3}$
- **15.** Let $f: R \to R$ be given by $f(x) = x^2 + 3$. Find
 - i. $\{x : f(x) = 28\}$
 - ii. The pre-image of 39 and 2 under f.
- **16.** A man accepts a position with an initial salary of Rs. 5200 per week. It is understood that he will receive an automatic increase of Rs. 320 in the very next and each month.
 - i. find his salary for the tenth month $% \left(1\right) =\left(1\right) \left(1\right)$
 - ii. his total earning during the first year.

17. If
$$(x + yi)^3 = u + vi$$
 prove that $\frac{u}{x} + \frac{v}{y} = 4(x^2 + y^2)$

- **18.** Two cards are drawn from a pack of cards. What is the probability that either both are red or both are kings?
- **19.** Determine the number n in a geometric progression $\{a_n\}$, if $a_1 = 3$, $a_n = 96$ and $S_n = 189$.
- **20.** Find n, if $^{2n}C_1$, $^{2n}C_2$ and $^{2n}C_3$ are in A. P.

OR

Prove that the product of 2n consecutive negative integers is divisible by (2n)!.

21. Find the equation of the straight line through the origin making angle of 60° with the straight line $x + \sqrt{3}y + 3\sqrt{3} = 0$

OR

Find the equations of the lines, which cut off intercepts on the axes whose sum and product are 1 and -6 respectively.

22. Differentiate $x^{-3/2}$ with respect to x using first principle.

OR

Differentiate $\frac{x+2}{x^2+3}$ and find the value of derivative at x=0.

23. Find the equation of hyperbola whose foci are (8, 3) and (0, 3) and e = 4/3

24. Prove that $\cot \theta \cot 2\theta + \cot 2\theta \cot 3\theta + 2 = \cot \theta(\cot \theta - \cot 3\theta)$

OR

Prove that $5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3$ lies between -4 and 10.

25. Find the mean and variance of the following data

Classes	0 - 30	30 - 60	60 – 90	90 - 120	120 - 150	150 - 180	180 - 210
Frequency	2	3	5	10	3	5	2

26. If Find
$$\sin \frac{x}{2}$$
, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ where $\tan x = -\frac{4}{3}$, x is in quadrant II

27. Plot the given linear inequations and shade the region which is common to the solution of all inequations $x \ge 0$, $y \ge 0$, $5x + 3y \le 500$; $x \le 70$ and $y \le 125$.

OR

How many litres of water will have to be added to 1125 litres of a 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

- **28.** Using principle of mathematical induction prove that 5^n -5 is divisible by 4 for all $n \in \mathbb{N}$. Hence, prove that $2 \times 7^n + 3 \times 5^n$ -5 is divisible by 24 for all $n \in \mathbb{N}$.
- **29.** If a, b, and c are in A.P.; b, c, and d are in G.P. and $\frac{1}{c}$, $\frac{1}{d}$, and $\frac{1}{e}$ are in A.P., prove that a, c, and e are in G.P.

OR

Show that:

$$\frac{1 \times 2^2 + 2 \times 3^2 + ... + n \times (n+1)^2}{1^2 \times 2 + 2^2 \times 3 + ... + n^2 \times (n+1)} = \frac{3n+5}{3n+1}$$