CBSE Board Class IX Mathematics Sample Paper 5 Time: 3 hrs Total Marks: 80 #### **General Instructions:** - 1. All questions are compulsory. - 2. The question paper consists of **30** questions divided into **four sections** A, B, C, and D. **Section A** comprises of **6** questions of 1 mark each, **Section B** comprises of **6** questions of 2 marks each, **Section C** comprises of **10** questions of 3 marks each and **Section D** comprises of **8** questions of 4 marks each. - **3.** Use of calculator is **not** permitted. ## Section A (Questions 1 to 6 carry 1 mark each) 1. What is the decimal form of $\frac{11}{1000}$? OR Is zero a rational number? Justify. - 2. x + y = 2 and x y = 4. Find the values of x and y. - 3. In the given figure, find the value of x? 4. If for one of the solutions of the equation ax + by + c = 0, x is negative and y is positive, then a portion of the above line will lie in which Quadrant? #### OR The cost of 5 pencils is equal to the cost of 2 ballpoints. Write a linear equation in two variables to represent this statement. 5. The Class marks of a distribution are 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, and 102. Determine the Class size? 6. PQRS is a parallelogram in which \angle PSR = 125°. Find \angle RQT. **Section B** (Questions 7 to 12 carry 2 marks each) - If $a = 2 + \sqrt{3}$, find the value of $a + \frac{1}{a}$. 7. - 8. The perpendicular distance of a point from the x-axis is 2 units and the perpendicular distance from the y-axis is 5 units. Write the coordinates of such a point if it lies in one of the following quadrants: - (i) I Quadrant (ii) II Quadrant - (iii) III Quadrant - (iv) IV Quadrant - 9. The total surface area of a cube is 294 cm². Find its volume. A matchbox measures $4 \text{ cm} \times 2.5 \text{ cm} \times 1.5 \text{ cm}$. What is the volume of a packet containing 12 such matchboxes? - 10. Check which of the following are solutions of the equation 7x 5y = -3. - i. (-1, -2) - ii. (-4, -5) OR Explain linear equations in two variables. - Find the area of an isosceles triangle with base 10 cm and perimeter 36 cm. - Simplify: $(-2x + 5y 3z)^2$. 12. #### **Section C** #### (Questions 13 to 22 carry 3 marks each) Express 0.001 as a fraction in the simplest form. OR Simplify $$\frac{\sqrt{a^2 - b^2} + a}{\sqrt{a^2 + b^2} + b} \div \frac{\sqrt{a^2 + b^2} - b}{a - \sqrt{a^2 - b^2}}$$ 14. Find the value of $x^3 - 8y^3 - 36xy - 216$ when x = 2y + 6. OR Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by $x + \pi$. 15. In the figure, PQ is a line segment and O is the mid-point of PQ. R and S are on the same side of PQ such that \angle PQS = \angle QPR and \angle POS = \angle QOR. Prove that - (i) $\Delta PQR \cong \Delta QOS$ - (ii) PR = QS - 16. If the polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, then find the value of a. - 17. In the given figure, DE \parallel OR and AP and BP are bisectors of \angle EAB and \angle RBA, respectively. Find \angle APB. 18. The following frequency distribution table gives the weights of 38 students of a class. | Weight in kg | Number of students | |--------------|--------------------| | | | | 30 – 35 | 10 | | | | | 35 – 40 | 5 | | | | | 40 – 45 | 15 | | | | | 45 - 50 | 5 | | | _ | | 50 - 55 | 1 | | | _ | | 55 - 60 | 2 | | | _ | | Total | 38 | | | | Find the probability that the weight of students is - i. more than or equal to 45 Kg - ii. less than 30 kg - iii. more than or equal to 30 Kg but less than 60 Kg - 19. Find the area of the triangle formed by A (0, 4), O(0, 0) and B(3, 0). - 20. If $x = 1 + \sqrt{2}$, find the value of $\left(x \frac{1}{x}\right)^3$. OR Find the value of $x^3 + y^3 - 12xy + 64$ when x + y = -4. 21. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder. If the height of the cylinder is 10 cm and its base is 7 cm, find the total surface area of the article. OR How much cardboard is required to make 35 penholders in the shape of cylinders, each of radius 3 cm and height 10.5 cm? 22. The length of 40 leaves of a plant are measured correct to one millimeter, and the data obtained is represented in the following table: | Length (in mm) | Number of leaves | |----------------|------------------| | 118 – 126 | 3 | | 127 – 135 | 5 | | 136 - 144 | 9 | | 145 - 153 | 12 | | 154 - 162 | 5 | | 163 – 171 | 4 | | 172 – 180 | 2 | - i. Draw a histogram to represent the given data. - ii. Is there any other suitable graphical representation for the same data? - iii. Is it correct to conclude that maximum leaves are 153 mm long? Why? ## Section D (Questions 23 to 30 carry 4 marks each) 23. Simplify: $$\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}$$ OR Express $$\frac{3}{\sqrt{3}-\sqrt{2}+\sqrt{5}}$$ with rational denominator. 24. ABCD is a rhombus. Show that the diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$. - 25. If the polynomial $x^4 + mx^3 25x^2 16x + n$ is exactly divisible by $x^2 4$, then what are the values of m and n? - 26. In the given figure, AC is the bisector of $\triangle BAD$. Find the measures of $\angle 1, \angle 2, \angle 3$ and $\angle 4$. 27. A cube and cuboid have the same volume. The dimensions of the cuboid are in the ratio 1:2:4. If the difference between the cost of polishing the cube and cuboid at the rate of Rs. 5 per m² is Rs. 80, find their volumes. OR 30 circular plates, each of radius 14 cm and thickness 3 cm are placed one above the other to form a cylindrical solid. Find the total surface area and volume of the cylinder formed. 28. If O is point lying inside ΔXYZ , then show that (OX + OY + OZ) cannot be less than the semi-perimeter of ΔXYZ . OR Show that the bisectors of the base angles of a triangle can never enclose a right angle. 29. In the given figure, AC = AE, AB = AD and \angle BAD = \angle EAC. Prove that BC = DE. 30. If $m = \frac{1}{2 - \sqrt{3}}$ and $n = \frac{1}{2 + \sqrt{3}}$, then what is the value of $7m^2 + 11mn - 7n^2$?